CREATE CONNECT LIVE inspire

Technology Trends towards 6G

Dr Alain Mourad 6GIC – University of Surrey (UK) 05 February 2021

Mega Trends to 6G

© 2021 InterDigital, Inc. All Rights Reserved.

Mega Trends Underpinning the Path to 6G

Stakeholders race for 6G research leadership 🕻

Key Insight:

- The race for 6G research leadership is ON
- Multi-billion (USD) Multi-year governmentfunded research programmes are launching
- Key stakeholders are announcing their 6G roadmaps and opening 6G Labs

Impact:

Puts onus on the industry R&D to drive 6G research agendas and lead harmonization efforts on 2030 system vision, technology trends and requirements in international forums such as ITU-R, GSMA, and NGMN

Momentum for support of more Verticals

Key Insight:

Industrial applications (aka verticals) remain the biggest potential growth areas for wireless communications and a major driver in the evolution of wireless requirements

Impact:

Industry 4.0 describes a wide category of industrial internet use cases and it has become apparent that only a subset are addressable by current 5G KPIs. B5G/6G still has much work to do in the vertical markets that it has promised to support

Rise of data-driven networks with AI/ML

12 interdigital

Key Insight:

AI/ML has already deeply penetrated Web, network and chip technologies, and this trend will continue as AI/ML matures and more data becomes available

Impact:

Potential to disrupt the design of future wireless networks and devices, across all domains (core, access, edge, device)

Widespread virtualization and disaggregation 🜼

Key Insight:

- 5G is built on virtualization and it is critical in the vision of the Core Network and Edge with the momentum now gathering in RAN too (e.g. O-RAN, SD-RAN, OpenRAN)

Impact:

This trend is disruptive in both technology and business factors (e.g. IPR, Regulatory) and even if technology challenges are overcome it may take until 6G before the full breadth & depth of possibilities are realized

Drive for new spectrum and new regulation

Key Insight:

Moving into higher frequency bands & new regulatory models is a key trend for achieving 100s of Gbps peak data rates over wireless and for driving more values from spectrum

5G private licences spectrum in Europe

More contiguous spectrum 80-100 MHz per MNO IN MID-BANDS AND 1 GHZ per MNO IN mmW The 6GHz band is the widest band included in Resolution 245, and it has the potential of being an important band for citywide 5G services from 2025 onwards.

FCC Opens Spectrum Above 95 GHz, Encourages Experimentation

Impact:

Fundamental problems begin to appear with digital design at above 100GHz, which promises a reengineering of several design elements including waveforms, codecs, massive MIMO, medium-access protocols

Key Forums Target Capabilities Technology Trends

Key Stakeholders Forums

From IMT-2020 To IMT2030

Recommends (as of Feb'21)

that the terrestrial radio interfaces for IMT-2020 should be

- 3GPP 5G-SRIT
- 3GPP 5G-RIT
- TDSI 5Gi

Working on

Technology Trends Towards 2030 (target release Jun'22)

IMT-2030

Source: Document 5D/TEMP/213

Workplan towards preliminary draft new Report ITU-R M.[IMT.FUTURE TECHNOLOGY TRENDS TOWARDS 2030 AND BEYOND]

Title	Workplan for a preliminary draft new Report ITU-R <u>M.[IMT.FUTURE</u> TECHNOLOGY TRENDS TOWARDS 2030 AND BEYOND]
Identifier	IMT.FUTURE TECHNOLOGY TRENDS
WP 5D Lead Group	WG Technology Aspects
SWG Chair	Mr. Marc Grant (marc.grant@att.com)
Editor	Mr. Marc Grant (marc.grant@att.com)
Focus for scope and work	This Report provides a broad view of future technical aspects of terrestrial IMT systems considering the time frame 2020-[2023] and beyond. It includes information on technical and operational characteristics of terrestrial IMT systems, including the evolution of IMT through advances in technology and spectrally-efficient techniques, and their deployment. Elements of this Report could be seen as useful for WRC-23 studies.

IMT-2020 to IMT-2030 Capabilities

Services Underpinning 5G Evolution to 6G 🚯

- Various combinations of performance requirements such as user experienced data rates, latency, reliability, positioning (I/O-H/V), coverage, connections density, range and speed.
- Further requirements for **significant improvements in resource efficiency** in all system components (e.g. UEs, IoT devices, radio interface, access network, core network).

Spectrum and Performance Capabilities 🚯

	IMT-2020*	IMT-2030**
Spectrum	Up to 100 GHz	Carrier frequencies up to 300 GHz
Bandwidth	At least 100 MHz; Up to 1 GHz	Single channel bandwidth above 10 GHz
Peak data rate (DL/UL)	20 Gbps (DL) 10 Gbps (UL)	Peak data rate exceeding 200 Gbps (downlink) and 100 Gbps (uplink)
User data rate (DL/UL)	100 Mbps (DL) 50 Mbps (UL)	Average user data rate exceeding 1 Gbps (downlink) and 0.5 Gbps (uplink) for multi-sensory XR and volumetric media streaming
U-plane Latency	4 ms for eMBB 1ms for URLLC	U-plane latency below 0.5 ms for connected industries, autonomous vehicles and tactile use cases
C-Plane Latency	Below 20 ms (10 ms desired)	Control plane latency below 5 ms for connected industries, autonomous vehicles and tactile use cases
Reliability	Up to 5 nines	Reliability up to 8 nines for connected industries and autonomous vehicles
Connection Density	1 device per sqm	Connection density up to 10 devices per sqm (10m devices per km2) for ultra-massive sensor networks
Energy Efficiency	Qualitative	Terminal and network energy efficiencies up by 1000x today's values 5G system
Positioning Accuracy	NA	Positioning accuracy below 5 cm (indoor) and 10 cm (outdoor) helped by joint sensing and communications
Mobility	Up to 500 kmh	Mobility exceeding 1000 kmh for flying objects (e.g. airplanes) supported by the integration with non-terrestrial networks

*ITU-R Doc 5/40-E "Minimum requirements related to technical performance for IMT-2020 radio interface(s)", Feb 2017

**H2020 EMPOWER www.advancedwireless.eu

1> interdigital

Future Wireless Technologies

Wireless Technologie	s 2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
								Future			
Spectrum	Backhaul/Access: (1) sub-6 GHz; and (2) up to 100 GHz	Enhancen New spectru	nents for up to : um (6-7 GHz; 10	100 GHz; 0-170 GHz)	New c Al-aided spect	lesign for spectr rum manageme	um above 100 (nt; joint sensing	GHz; ; and comms	New design f Integrat	or spectrum up t ed sensing and co	o 300 GHz; omms
Massive MIMO	Centralized arch.; Up to 256 AAs; Digital/Digital- Analogue beamforming	Enhancem higher free	ients to beamfo quencies and m	rming for ulti-users	Larger ante directivity co	nna arrays (e.g. at higher frequ ordinated multi	512 or more) an encies; Distribu -point schemes.	nd super- ted and	Holographic I or more; R surfaces; Al-	peamforming; PA leconfigurable int aided ultra mass	As of 1024 telligent ive MIMO
Waveforms	OFDM-based with flexible numerology	OFDM-bas tailore	ed with new nu d to new freque	merology encies	New wavefor	rms to cope with (3) positionir	n (1) massive Mī ng accuracy; and	TC (e.g. UFMC); ((4) low power a	2) higher freque nd higher energ	encies (e.g. Impul y efficiency	se-based);
Coding and Modulations	LDPC/Polar codes; Uniform constellations (up to 256QAM)	Enhanceme Early nor	ents to LDPC/Pol n-uniform conste	lar + QAM; ellations	Al-aided con:	l channel codes stellation shapir	(e.g. LDPC/Polaing and non-unifo	r/Read-Muller) for form constellation	or 100s of Gbps as with orders e	throughputs; Al- xceeding 256QAN	aided M
Multiple Access	Orthogonal T/F/C-DMA; TDD/FDD duplexing	Limit Dy	ted enhanceme /namic duplexin	nts; g		Resurge Re	ence of non-orth esurgence of in-l	hogonal multiple band full duplexi	access aided wing aided with A	ith AI; I	
Multi-connectivity	Dual connectivity (e.g. 3GPP); Dual-access (3GPP- WiFi)	Integrat unlice IA	ed access (licen nsed; 3GPP and AB enhancement	sed and WiFi); ts		Multi-access (Wireless a	s-based multi-co and optical wirel	nnectivity (terre less); Al-aided m	strial and non-to ulti-access mana	errestrial); agement	
Low power	Power saving (3GPP); and wake-up radio (IEEE 802.11)	Up to few device-lif	10's of % increa e, handset stand	ase in IoE dby time	Zero-Er Energy	nergy TRX opera harvesting incl	iting with 10's o uding backscatte	f nW; ering	AI/ML assis reaching po Wire	ted self-sustainin wer density of 0. less power trans	g devices 1W/mm2; fer
Positioning	Solutions <1m; Ongoing specs (.11az, 3GPP)	Improved a cooper frequencie	accuracy <20 cm ative technique es and angular s	n based on s, high eparation	Imț	proved accuracy Integ	<pre>v <10 cm based c gration with non</pre>	on integration wi -terrestrial netw	th sensing and I orks; and use of	RF fingerprinting; f AI	

Future Network Technologies

Network Technolog	ies 2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Today											Future
Edge native computing	Edge-cloud solutions; Ongoing specifications (ETSI MEC/3GPP)	Edge+5G i enhance	ntegration; Distr ements (e.g. mici	ributed edge roservices)	Inter-edge mobil	interworking ar e and power-co	nd federation; Sunstrained edge I	upport for nosts	AI-powered so integration	olutions and App across domains	s; Seamless and tech
Virtualization	SDN and NFV enablers; Mature specifications (e.g. ETSI NFV)	Lightw unikerne	veight virtualizat ls); Improved ru	ion (e.g. ntime perf.	Service cor network	ntinuity, elasticit ing functions (VI	y and portability NF) in the core a	/ of virtual ind RAN	Extensions constra	for VNF support ained mobile dev	on board vices
Slicing	Key feature in 5GS; Ongoing specifications (3GPP)	Improv resources,	ved control of dis and inter-slice i	stributed nterworking		Support	for "on the fly"	slice creation, in	stantiation and	scaling	
Deterministic and reliable networking	Deployed in wired networks; Specified in IETF and IEEE 802.1	Suppor	t for wireless (e. networks)	g. private	Enha	Extended supp nced determinis	ort for reliability m and time sen	and availability and availability sitivity to suppor	over wireless (e t time-critical (t	.g. IETF RAW); actile) internet A	Apps
Automation and Network Al/ML	Big-data based management solutions (OSS/BSS); Ongoing specifications (3GPP, ETSI)	Al-powere for non-r	ed network contr eal time RAN ma	rol including anagement	Zero touch r analytics and	management; Sn d distributed AI	nall-data based for control and u	distributed user planes	Full automati end inc	on and distributi cluding on-the-de	ion end-to- evice
Non-terrestrial networks	Separate systems (GEO/LEO); Ongoing specification for future integration (e.g. 3GPP)	Converg virtualiza	gence with terreation, edge, slicir	strial (e.g. ng, latency)	Seamle	ess integration w connectivity, ext	ith terrestrial (u reme coverage)	nified	Extension miniaturized	s for support of r (nano) satellites	massive and HAPs
Distributed ledgers	Cloud-based solutions; Early specifications (e.g. ETSI PDL, SAI)	Block man	chain for netwo agement and se	rk data curity	Blc	ockchain for sup	port of distribut	ed networks, dis	tributed AI, and	distributed Edge	2
Quantum Internet	Preliminary research started in IETF	Sin	gle hop experim	ents	Multi-ho	p deployments b	out with low # of	f Qubits	Initial roll ou with	it of larger scale higher # of Qubi	networks ts

Conclusions

- Today, we are in quite early stages of the rollout of 5G and we do still have a long way to go with the evolution of this technology
- That said, now is historically the **right time to be asking what is next**
- Emerging use cases for B5G/6G seem quite familiar but hide a truth that 5G may only open the door to these use cases
- Extreme requirements will continue to push the evolution of wireless well beyond 5G and 6G
- Looking out to the future on the promising technology trends, it appears that there will be inflection points that may lead to a 6G by 2030 a.k.a. IMT-2030 / NET-2030

Acknowledgment to Current B5G Collaborations

empower www.advancedwireless.eu	EMPOWER	<u>H2020:</u> Empowering Transatlantic Platforms for advanced Wireless Research
SGROWTH www.5growth.eu	5GROWTH	H2020: 5G-enabled GROWTH in Vertical Industries
www.5g-dive.eu	5GDIVE	H2020: Edge Intelligence for Vertical Experimentation
5GCLARITY www.5gclarity.com	5GCLARITY	<u>H2020:</u> B5G Multi-Tenant Private Networks Integrating Cellular, Wi-Fi, and LiFi, Powered by AI and Intent Policy
ARAMANA https://aimm.celticnext.eu/	AIMM	<u>CELTIC</u> : Artificial Intelligence-enabled Massive MIMO

Thank You

Alain MOURAD, PhD Director Engineering R&D

InterDigital Europe Ltd. 64 Great Eastern Street London, EC2A 3QR United Kingdom

<u>Alain.Mourad@InterDigital.com</u>